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Influence of Higher Order Modes

on the Measurements of Complex
Permittivity and Permeability of Materials

Using a Microstrip Discontinuity

Patrick Quéffélec and Philippe Gelin

Abstract—The accurate electromagnetic analysis of discontinu-
ities in a microstrip device, used for the broad band measurement
of complex permittivity and permeability of materials, is pre-
sented. This analysis is based on the spectral domain approach
together with the mode matching method which consists in the
electromagnetic field matching at the discontinuities for each
mode of the microstrip line. The study of the influence of higher
order modes on the S-parameter measurements enabled us to
determine the domain of validity of the transmission-line theory
that has been used until now in the processing of the data.
The use of the transmission-line theory for the description of
the electromagnetic behavior of the cell discontinuities permits
in the 45 MHz-14 GHz frequency band the achievement of a
good precision (better than 5%) for the results on materials
with low electromagnetic characteristics (' <10 and p' < 10).
The improvement in high frequencies of the results on materials
with greater permittivity and permeability is provided by the
calculation of higher order modes (about 10) in the analysis of
the microstrip discontinuity.

I. INTRODUCTION

BROAD BAND (45 MHz-14 GHz) measurement

method for complex permittivity ¢* = & — je” and
permeability p* = p' — ju” of materials has previously been
set out [1]. This method, inspired from Weir’s works [2] and
from Barry’s ones [3], is based on the reflection/transmission
measurement of a microstrip line loaded with the test sample
(Fig. 1). Indeed, the measurement results obtained by this
technique for low loss materials (typically &” <0.1 and
" <0.1) are less precise than those obtained by a method
using a cavity resonator [4], because of the impedance
mismatching of the transmission line. Yet, the use of a thru-
reflect-line (TRL) calibration procedure [5] for the network
analyzer permits increasing the sensitivity of the method.
In fact, the main interest of the reflection/transmission
technique is the broadness of the useful frequency band,
opening up new prospects for applications such as microwave
electromagnetic compatibility (EMC), that calls for the broad
band electromagnetic characterization of lossy materials.
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Fig. 1. Microstrip cell loaded with the sample under test.

To obtain ¢* and p* of the material from the S-parameter
measurements, it is necessary to use an accurate electromag-
netic analysis of the test device (direct problem) together
with an optimization program (inverse problem). The direct
problem corresponds to the calculation of the S-parameters
of the test device as functions of the complex permittivity
and permeability of the material present in the cell. This
broad band calculation requires a full-wave analysis: the
spectral domain approach (SDA) [6]-[8] for the electromag-
netic characterization of the microstrip line, and the study of
cell discontinuities (unloaded/loaded line discontinuities). The
first approach chosen in the discontinuities analysis was the
transmission-line theory [1]. This theory consists in taking only
the dominant hybrid mode propagated in each region of the
cell into account, neglecting the higher order modes that can
be excited at the discontinuities.

The broad band measurement method that was developed,
when fitted out with a TRL calibration procedure for the
network analyzer enabled us to characterize homogeneous or
heterogeneous dielectrics and magnetic materials with low
electromagnetic characteristics (typically ¢’ < 10 and p’ < 10
over about 6 GHz) with a good precision in the 500 MHz-
14 GHz frequency band. In general, the results are accurate
to better than 5% for these materials. Fig. 2 and Fig. 3
illustrate these results for a composite material (polymer and
carbon black) and a NiZn ferrite. Concerning the composite,
the measured #* data of 3.7 — j0.1 agrees with the results
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Fig. 2. Measured ¢* and p* data for a composite material (polymer and
carbon black).
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Fig. 3. Measufed ¢* and p* data for a NiZn ferrite.

obtained by other laboratories using standard characterization
techniques (cavity, guide). As would be expected x* = 1 — jO
was measured. The measured ¢* data of 15 — j0.5 for the
ferrite agrees with the results obtained at low frequencies with
another method. The measured £* data is in close agreement
with the results given in literature [9]. At high frequencies the
results are less precise for the materials with a higher value of

permittivity and permeability. For example, Fig. 4 shows the -

measured €* and p* data for a dielectric with a high dielectric

constant. The value of the permittivity is constant (' = 30) .

in the exploited frequency band, whereas the measured &’ data
decreases when the frequency increases. The analysis of the
error sources depending of our measurement method has been
. previously made [1]. In order to explain the decreasing of
the accuracy of the results at high frequencies for materials
with a high permittivity and/or permeability, the etror analysis

brought us to put the problem of the domain of validity of the.

transmission-line theory that has been used until now in the
studying of the measurements and in which the higher order
modes are neglected.

In this paper we will present the accurate electromagnetic
analysis of the microstrip cell discontinuities in order to show
the influence of the microstrip line higher order modes on the
measurement results.
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Fig. 4. Measured ¢* and p* data for a ceramic.

-W/2 W/2

Fig. 5. Microstrip line cross section.

II. ELECTROMAGNETIC DESCRIPTION OF THE TEST DEVICE

The rigorous description of the electromagnetic behavior
of the cell discontinuities calls for the taking into account of
the maximum of physical phenomena in the model used. In
the cell, the dominant mode of the microstrip line interacts
with the unloaded/loaded line discontinuities. So, part of the
energy transported by this mode is reflected and transmitted
in the line, i.e., reflection and transmission of the dominant
mode and excitation of propagated higher order modes, and the
other part is stored in the neighborhood of each discontinuity.
The stored energy corresponds to the excitation of evanescent
higher order modes. The spectral domain approach used for the
microstrip line electromagnetic analysis is not restrictive for
this type of analysis but allows us to take all the modes present
in the microstrip cell into account. The problem is essentially
the location of the zeros of a characteristic equation and then
to match the electromagnetic fields at the discontinuities for
each mode.

In this paper, we will first describe the electromagnetic
analysis of the microstrip line treated by the spectral domain
approach then we will focus our attention on the study of
the cell discontinuities based on the mode matching method
[10], [11]. Finally, we will compare the numerical results with
measurements to confirm our calculations.

III. ELECTROMAGNETIC ANALYSIS OF THE MICROSTRIP LINE

The cross section of the transmission line studied here is
shown in Fig. 5. It is composed of a boxed microstrip line
which corresponds to the cell and a sample under test. We

~ also take into account an air gap-between the sample and the
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line substrate. The central conductor is assumed to have ideal
conductivity and negligible thickness.

A. Electromagnetic Fields in the Microstrip Structure

The spectral domain approach is based on the Fourier
expansion of electric and magnetic fields. The Helmboltz
equation in each of the layers » = 1,2---5 of the circuit
medium is
, 2, E, _5
(A+w e:ouog.lul){Hl 0
where ¢, is the relative permittivity of the layer, 4, the relative
permeability of the layer, ¢ the permittivity of free space, o
the permeability of free space, A the Laplacian of a vector
and w the wave pulsation.

The solutions of this equation in the propagation direction
are

E., =¢%(z.y,)exp(—vyz) electric field

H:z - wzh (a:’ y) CXp<—’YZ)

where « is the propagation constant in the positive z direction.
The propagation constant is defined as

magnetic field

y=a+8

where o is the attenuation constant and J the phase constant.

The studied structure is symmetrical about the y axis; this
permits separating the even modes from the odd modes. The
dominant mode of the microstrip line is the first even mode.
Since the microstrip discontinuities are also symmetrical about
the y axis, we will study the even modes and use the inverse
Fourier transforms given by

+o0

iz, y) = Z Y (m.y) cos amr  (even function)
m=-+1
oo

1/1?(;17,;1/): Z 1/17]’(1,y7,b.‘y)sinozm‘1: (odd function) (1)
m=-41

The values of the spectral variable o, which also cor-
responds to the propagation constant in the 2 direction are
chosen in such a way that the boundary conditions on the
lateral shields parallel to the y axis are satisfied. i.e.,

™
Q= (2m —1)—. m=1---,00
L
where L is the structure length. N

The transformed waves potentials ¢ and 1/)1’1 can be de-
termined analytically in each of the layers of the circuit
medium by solving the Helmholtz equation applied in the
transform domain. The boundary conditions prevail for quj
and ¢! identical to those for the transformed components
E’yz and I .- In a circuit medium of five layers (Fig. 3), the
total electromagnetic field can be described by 16 independent
spectral distributions A(av,, ), B(am). - P(ay,). For the in-
terfaces between the different layers, exactly the same number
of continuity conditions for the tangential components of the

electric and magnetic fields can be formulated in the spectral
domain, i.e.,
E, —E,., =0 E

H, ~H,  =J. H

Tl 3 <

-E

a1l 0

R A 2)

Za

for i = 1,---4 and y fixed at its interface value for each
subscript 4. In interfaces which do not contain conductors, J,,
and .J; are defined to be zero. The structure studied contains
one conductor. This conductor is the strip between layer 1
and layer 2 (Fig. 5). The spectral domain current density
components in the strip are denoted J,, and J.. By analytical
processing of the relations (2), all the unknown distributions

A(am). -+ P(am) can be eliminated or expressed by J, and
J.. Finally, the relations (2) reduce to a simpler form
l:EL(am-y = b) — Lll(am) L12(am)
Ez(anu y= b) L21(am) L22<05m)
. J}(&m,y — b)
{Jz(am»y =1b) &

where E,, E, are the electric field components in the plane of
the circuit metalization and L is the spectral domain Green’s
matrix of the microstrip structure.

The matrix equation (3) can be solved by the moment
method. The moment method used is the GALERKIN method
[12].

B. Applving the Galerkin Method

The Galerkin method consists in expanding one of the
unknown components of (3) into a suitable set of basis
functions. We expand the surface current densities .J, and .J.,
since J, and .J, are easier to describe in physical terms than
the electric field components F, and E.. We can write in the
space domain

P

T2y =b) =Y cpJup() 4)
p=1
Q

JAz.y =b) = Z dqd=q(z) (5)
g=1

where P and () are respectively the number of basis functions
used to describe J, and J., and ¢, and d, are unknown
coefficients.

In the plane of the circuit metalization, the electric field is
defined to be zero in the strip. and the surface current density
only exists in the strip. As a consequence, the scalar products
given by

<J1‘p($wy =b), B (v,y = b))

L /2
:/ Jep Epds  p=1,---,P
—L/2

(Jogoy =0),E.(x.y = b))

+L/2
:/ .]Zq‘EZdJ; q:17'.'7Q
L/2
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are equal to zero. Parseval’s theorem enables us to write these
scalar products in the spectral domain

> Jup(Ctm,y = b) + Eo(0tm,y = b) = p=1,.,P

":1 (©)
> Jeglam,y=b) - E(am,y=b)=0 ¢=1,--,Q.
. @)

Taking (6), (7) and using (3), (4), (5), we get a set of
simultaneous equations from which the unknown coefficients

¢p and dy can be found
K12 ’
%Kﬂ]] [ ] =0 ®

[[Kill]
-, [K?2] are matrices, the elements of which

[K5,]

where [K ],
are given by

K= Z Jm(am)Lll(am)pr(am)
i=1,.- . Pip=1,...P
K2 =" Jeilam)liz(am)Jzq(am)
m=1j= L. Pig=1,---Q
K2 = 3" Joj(0m)Loy(@m) Jap(am)
m=1j =1,---,Q;p=1,---P
Kjg = Z Jj(0tm) Laa(0tm ) Jzq (0tm)
m=1
j:l,...,Q;q: 1,Q

The electromagnetic characterization of the microstrip struc-
ture requires solving (8).

C. Modal Characterization of the Structure

1) Convergence Problems: At this stage of the analysis,
the formulation of the electromagnetic problem is rigorous.
Yet, the numerical computation calls for, on the one hand,
the choice of a finite number of basis functions to describe
the current densities in the strip and, on the other hand, the
truncation of the Fourier expansions. |

It has been shown [13] that if the basis functions used to
describe the current densities in the strip contain the correct
edge singularity, then accurate results for the propagation
coefficients are obtained by using very few terms. The basis
functions which have been selected here are the sine and
cosine functions. These functions enable us to describe the
edge effects in the strip and the parity properties of modes.
Moreover, the Fourier transforms of the sine and cosine func-
tions are easily calculated. We have studied the convergence of
the propagation coefficients as a function of number of basis
functions. This study [14] has shown that accurate results for
the propagation constant of the dominant mode are obtained

by using only a single term in the z direction and two terms
in the z direction.

The following empirical criterion has been put forward {15],
[16] to get accurate results when the Fourier expansions are
truncated

Mo = (KNL)/W ©)

where M, is the number of harmonics in the Fourier

expansions, N the number of basis functions, L the structure

width, W the strip width and K a coefficient contained
between 1 and 1.5.

The study of the convergence of the calculated propagation
coefficients as the number of harmonics appearing in the
Fourier expansions has permitted us to validate this criterion
[14]. We can typically truncate the Fourier expansion after
about 100 harmonics for the microstrip structures studied.

2) Optimization of the Spectral Domain Approach by Mak-
ing Use of Asymprotic Expansions: The dispersion relation
linking the frequency to the propagation constant for each
mode is given by the equation

det[K] = 0. (10)

The location of a zero of this equation calls for the cal-
culation of the matrix K in the complex plane many times.
Moreover, the convergence of the calculated value of det[K]
requires to take a large number of harmonics in the Fourier
expansions. The computations can be speeded up by making
use of asymptotic forms of the spectral domain Green’s matrix
L [17]. The method consists in expressing the elements of the
matrix K as follows:

Kii = i”: Jo1(0tm) (L1t (am) — H11)Je1 (am)
m=1
+ i jxl(am)Hlljwl(am)
m=1
K= i Tor(0m)(Lnz(ctm) = Hi2) Jon ()
m=1
+ i Tor(am)HizJon(0m) = 1,2
m—t
=3 Foslam)(Ear(am) = Hin)as )
m=1 .
+ i Jon(am)Hor o1 (o) N =1,2

KJZV Z JzN(am)(LZZ(am) - H22)Jzn(am)

o0

+ Z JzN am HZZJzn(am)
m=1

N=12andn=1,2
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where
Hy = Ai_I)HOOLll(Oém)
Hypp = n}gnoo Lia(om)
Hy = n}gnoo Loi(am)
Hye = lim Lag(oy).

m—>00

The asymptotic limits Hy;, Hy2, Ha1, Hyo of the elements
of the spectral domain Green’s matrix L have finite values
since Ly1,L12, L2y, Loy (tangent and cotangent functions)
converge as m approaches infinity. The matrix K can be
written as follows:

The convergence of the first sum is very fast since we can
typically truncate it after about ten terms to ensure accuracy.
So the reduction in the computation time depends on the form
of the matrix H. The second sum can be written in the form

Y [Hm) = Fiw,y) - Y [Fa(m)].

The matrix F5 depends only on the ratio of the strip and
structure widths. The advantage of this formulation lies in
the fact that the matrix F5 only needs to be calculated once
for each microstrip geometry to be considered. Moreover, this
summation has the same value for the microstrip line loaded
with the sample under test as that for the unloaded microstrip
line. This saving is important for the analysis of the cell
discontinuities.

Fig. 6 shows that with the asymptotic expansions, the
convergence of the propagation constant of the dominant mode
as the number of terms taken in the Fourier expansion is
increased very fast. Without the asymptotic expansions, the
convergence is relatively slow.

The field pattern of the microstrip line is obtained by the
calculation of the eigenvector 1% given by

C1

where ci,d; and ds are the weight factors of the basis
functions selected to describe the current densities in the strip.
The eigenvector V' is found by solving the following matrix

system
-1
C1 :_Kllll I(::llz2 X K::ll% -dq
ds K31 22

K33
where d; is fixed since the determinant of the matrix K
is equal to zero for each eigenvalue (redundance of one
equation). '

The calculation of the weight factors ¢1,d; and dy permits
to find the current in the strip. By taking (3), we get the electric
field in the plane of the circuit metalization. Finally, by using
the continuity conditions we have the total electromagnetic
field in the structure.
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Fig. 6. Convergence of the propagation constant of the dominant mode as
the number of terms taken in the Fourier expatsions (frequency = 10 GHz).
(a) With the asymptotic expansions. (b) Without the asymptotic expansions.

IV. CHARACTERIZATION OF THE CELL
DISCONTINUITIES BY MODAL ANALYSIS

The modal analysis {10], [11] consists in matching the
electromagnetic fields at the studied discontinuity for each
mode of the structure. The transverse fields are normalized
over the cross section of the structure, this permits getting
the coupling coefficients between modes and the values of the
reflection and transmission coefficients of the discontinuity.
So, this method calls for the accurate location of a large
number of modes on both sides of the discontinuity.

A. Location of the Modes of the Microstrip Line

The dispersion relation linking the frequency to the prop-
agation constant for each mode is obtained by the location
of the complex roots of the characteristic equation of the
microstrip line (10). Yet, the calculation of higher order modes
is much more difficult than the calculation of the dominant
mode because the characteristic equation of the microstrip line
also contains many poles that are sometimes very close to the
zeros corresponding to the higher order modes. That is why
care must be taken not to miss solutions. Fig. 7 shows the
typical plot of det[K] as a function of v%.

It has been shown [17] that the poles of (10) correspond
to the roots of the dispersion equation of a loaded waveguide
which have the same geometry and the same layers as the
studied microstrip line. The roots of the dispersion equation
of the waveguide correspond to the LSE and LSM modes. Ina
first time, the accurate location of the modes of the microstrip
line was achieved by using the Miiller’s method [18], [19]
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Fig. 7. Typical plot of det[K] as a function of 72 (frequency = 10 GHz).

and initializing each searched root at the poles calculated by
the electromagnetic analysis of the loaded waveguide. Yet, in
spite of all the precautions taking during the initialization of
the roots, the Miiller’s method can miss solutions. In this case,
the use of a dichotomic method permits to solve (10) on the
real axis neglecting the losses of the structure, and finally the
location of each root in the complex plane is accomplished by
introducing the losses progressively in the calculation. This
procedure requires a knowledge of the values of the losses
in the studied structure, i.e. the losses of the material under
test. Unfortunately, we cannot proceed in such a way in our
case because the electromagnetic characteristics of the material
are the unknowns of the problem (we want to measure the
complex permittivity and permeability of a test sample by
solving an inverse problem). As a consequence, the calculation
of higher order modes at the time of the resolution of the
inverse problem requires the use of a numerical method really
suited to the location of complex roots that are very close to
the poles of the characteristic equation. We are now developing
an expansion in the complex plane of the dichotomic method,
usually used for the location of real roots. This study will
be published in a next paper. In the present paper, we only
consider the calculation of higher order modes in the direct
problem, showing the influence of these modes on the S-
parameters for a given material in the cell

We have compared our numerical results to those of the
literature to confirm the validity of the calculation of the higher
order modes of the microstrip line. Fig. 8 shows that our results
are in close agreement with the results given in the literature.
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Fig. 8. Dispersion diagram of a typical microstrip line.

The accurate calculation of the higher order modes does not
require the increase in the number of basis functions used in
the spectral domain approach to describe the current densities
in the strip.

After the accurate calculation of the modes of the multilayer
microstrip line, we have to match the transverse electro-
magnetic fields for each mode at the unloaded/loaded line
discontinuities in order to get the reflection and transmission
coefficients of the microstrip cell.

B. Modal Matching at the Cell Discontinuities

The calculation of the coupling coefficients between modes
Pny tn, Ry, Ty, at the unloaded/loaded line discontinuities (Fig.
9) requires four equations. These equations are the continuity
conditions for the electric and magnetic fields components in
the plane of each discontinuity given by

z =10
N M
(L+p0)ES + Y pnEn =Y (ta+ Rue " HEL (1D
n=1 n=0
N M
(1= po)HE+ > poHr =" (ta+ Rue @ HH] (12)
n=1 n=0
z =1
M N
> (tne <+ R)E; = ) ToE, (13)
n=0 n=0
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M N
Zte% ~Ry)H=>" T.H) (14)
n=0 n=0
where [ is the test sample length, v;' the propagation constant
of the nth mode of region 2, M the number of modes taken in
the region 2 and N the number of modes taken in the region
I and the region 1’.

Using (11)—(14) and the orthogonality of the modes, the
coupling coefficients py,,t,, Ry, T, can be related to each
other in the following manner

ti(Poa (1) P31 (7, 0) + Pay(i) Pr2(i,0))

+ Rie ™"} (Paa(i) P, (4,0) —
N
= 2P15(0,4) P31 (3,0) + Y pn(Pra(n,i)P3(i,0)

n=1

— P35 (i,n)P12(0,4)) i=0,--
L;(Pra () Pr5(i,0) + Pl (i) P21(0,7))
= 2t0€_721P21(0 i) Pr,(4,0)

+Z

Py5(1) P12(0,4))

M (15)

e“’c

(P21(n,4) Py (3,0)

+ PlZ( ’ )P21( s )) + Rn(Pﬂ(n?Z)Pl*Z(Z/O)
MPI*Q(Z?TL)P21(072))] Z:O,,N (16)
N
> Tu(Pro(n, i)Psy (i) — Pgy(4,n) Poa(i))
R — n=0
' 2P (1) Py (1)
1=0,---, M 17
1 M
= tn(Pa1(n, )Py (i
P 2P11(Z)P1*1(l) n:O[ ( 21( ) 11()
— Piy(i,m) P11 (i) + Rne™ % (Por (n,4) Py (4)
with
Pyi(i,4) = <H31|EE>
:%ﬁ@A@yw
sh +L1/2
:%/ / [E} Hj — H} B2 du dy
0 J-L/2 ‘
and
Pio(i,j) = (HF|E})  Ph(i,j) = (B} |H?)
Pu(i) =(H}|E}) PG = (BJ|H])
Pas(i) = (HP|E}) P3(i) = (EZ|H?)

where S is the cross section of the microstrip line and *
denotes complex conjugate.

The method chosen to solve the equations (15)~(18) is the
Neumann’s method [22]. This iterative method consists at first
in calculating the initial values of p,,, t,,, R,, T;, neglecting the
reflection coefficients of the higher order modes in (15)—(18).
Secondly, the values of p,, tn, R., Ty are calculated without

région 2

région 1'

dm : dominant mode

P, tn, Rn, Tn : coupling coefficients
between modes

Fig. 9. Unloaded/loaded line discontinuities in the microstrip cell.
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Fig. 10. Convergence of the reflection coefficient modulus as the number
of modes taken into account in each region of the microstrip cell (frequency

= 1 GHz).

approximation from their initial values using (15), (16), (17),
(18) and so on, until the convergence of the calculated value
of the reflection coefficient of the dominant mode is obtained.
Finally, the S-parameters of the microstrip cell are given by

Sy1 =8y = pe=?0t0

Sp1 =819 = Te 20l

where -, is the propagation constant of the dominant mode of
region 1 and region 1’ and /, the region 1 and region 1’ length.

The numerical computation of the S-parameters of the
microstrip cell calls for the truncation of mode sums to a
finite number of terms in (15)—(18). We have studied the
convergence of the calculated values of the S-parameters as
the number of modes taken into account in each region of the
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Fig. 11. Variation of the reflection coefficient modulus of the microstrip cell
loaded with a low-loss dielectric (¢/ = 2.2, sample length ! = 3.2 mm,
thickness ¢ = 1.5 mm).
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Fig. 12. Variation of the reflection coefficient modulus of the microstrip cell
loaded with a low-loss dielectric (¢’ = 3.3.1 = 4 mm, ¢ = 2.8 mm).

cell. Fig. 10 shows that we can typically truncate the mode
sums after about ten terms to obtain the accurate calculation
of the S-parameters of the cell.

C. Numerical Results and Experimental Verifications

In order to know the influence of the higher order modes
on the S-parameters of the microstrip cell and the domain of
validity of the transmission-line theory previously used [1], we
have compared the simulated S-parameters to the measured S-
parameters, on one hand, and to the S-parameters calculated
from the transmission-line theory, on the other hand. Fig.
11-13 show the results obtained for three discontinuities using
different materials. In order to make the comparisons between
theoretical and experimental results easier, we have chosen
dielectric materials with well-known properties and a relative
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Fig. 13. Variation of the reflection coefficient modulus of the microstrip cell
loaded with a low-loss dielectric (¢/ = 37,1 = 2 mm,¢t = 1 mm).

permittivity which is constant in the exploited frequency band.
For the discontinuities using a dielectric material with a low di-
electric constant (¢’ = 2.2 and &’ = 3.3), the simulated values
of the reflection coefficient modulus in Fig. 11 and Fig. 12 are
in close agreement over the exploited frequency band with the
measured values and those obtained with the transmission-line
theory. On the contrary, for the dielectric material with a great
dielectric constant (¢/ = 37), the gap between the measured
values and those obtained with the transmission-line theory
widens as the frequency increases, while the values simulated
by the modal analysis are closer to the measurements with
only six higher order modes taken into account on both sides
of each loaded/unloaded line discontinuity (Fig. 13). These
results confirm the influence of the higher order modes of the
microstrip line on the S-parameters of the cell. They also prove
that when the transmission-line theory is used to describe the
electromagnetic behavior of the cell discontinuities, the results
previously obtained are worse at high frequencies for materials
with great electric and magnetic susceptibilities.

V. CONCLUSION

We have previously developed a method easy to implement
for the broad band measurement of the complex permittivity
and permeability of materials [1]. This method is based on
the reflection/transmission measurement of a microstrip line
loaded with the test sample. The fact that the measurement
results on materials were worse in high frequencies for samples
with great values of electric and magnetic susceptibilities over
the exploited frequency band, brought us to study the domain
of validity of the transmission-line theory used to describe the
electromagnetic behavior of the unloaded/loaded line discon-
tinuities during the processing of the data. In this paper, we
have presented the rigorous analysis of the microstrip cell dis-
continuity taking into account the higher order modes that can
be excited at the discontinuities. We have shown the influence
of these modes on the S-parameters of the cell. For materials
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with-low electromagnetic characteristics (typically & < 10 and
1 < 10 over about 6 GHz) in the cell, the transmission-line
theory is in close agreement with the measurements in the
exploited frequency band (45 MHz-14 GHz). On the other
hand, for materials with greater permittivity and permeability
in high frequencies, higher order modes must be taken into
account in the calculations of the S-parameters of the cell.
In this case, the modal analysis (modal matching at the cell
discontinuities) must replace the transmission-line theory to
describe rigorously the electromagnetic behavior of the cell
discontinuities in the processing of the data. The resolution of
the inverse problem is more difficult when higher order modes
are calculated in the direct problem. As a consequence, in this
paper we have only considered the direct problem. The study
of a new numerical method for the calculation of higher order
modes at the time of the resolution of the inverse problem will
be presented in a future paper.
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